
1 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

Improving search relevance is difficult. Learning to Rank (LTR) is an

important and powerful technique which utilizes supervised machine

learning to address the problem of search relevancy. An LTR approach

leverages machine learning to automatically tune relevancy factors, which

not only alleviates the pain associated with manual processes like boosts and

blocks, but also promises significantly improved relevancy with the use of

state of the art modeling techniques.

Recent versions of Solr include a Learning to Rank component, but there

are still significant practical barriers to using LTR. First of all, Solr’s LTR

capabilities are library and API-level building blocks, with reference

documentation that would only make sense to a very experienced search

engineer. Secondly, Solr’s LTR component does not actually train any

models; it is left up to you to custom build a model training pipeline from

scratch. Lastly, figuring out how all these pieces fit together to create an end-

to-end LTR solution requires a significant amount of engineering and data

science expertise.

Learning to Rank for
Better Search Results
By Andy Liu, Senior Data Engineer at Lucidworks

2 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

To address these shortcomings, this tutorial will demonstrate how to implement an

end-to-end Learning to Rank solution that greatly reduces the amount of effort required

to implement and operationalize LTR. In addition to these practical benefits, we will

demonstrate the power of the Fusion platform by combining LTR with insights derived

from signals. When used together, this offers significant gains in search relevancy.

For a brief, yet effective introduction to the fundamentals of Learning to Rank and

Solr’s LTR capabilities, watch Diego Ceccarelli and Michael Nilsson’s talk at

https://berlinbuzzwords.de/17/session/apache-solr-learning-rank-win.

Learning to Rank Tutorial Setup
The end-to-end Learning to Rank tutorial code with setup instructions can be found at

https://github.com/lucidworks/fusion-ltr-webinar.

Under Fusion/Solr Setup, we walk you through the initial setup process for enabling

LTR for your Fusion/Solr instance. Fusion’s Solr configuration administration UI makes

configuring LTR far more convenient and straightforward.

For our tutorial, we use an ecommerce dataset provided by Kaggle and Best Buy which can

be downloaded at https://www.kaggle.com/c/acm-sf-chapter-hackathon-big. Follow

the instructions under Index Data to index the product catalog and click signals.

The dataset contains 1,275,077 products, and 3,108,779 signal events— all clicks over a

2 month time period:

https://berlinbuzzwords.de/17/session/apache-solr-learning-rank-win
https://github.com/lucidworks/fusion-ltr-webinar
https://www.kaggle.com/c/acm-sf-chapter-hackathon-big

3 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

In order to train a Learning to Rank model, we need a set of relevance judgments,

known as ground truth (for more information, see https://nlp.stanford.edu/IR-

book/html/htmledition/information-retrieval-system-evaluation-1.html).

Ground truth is necessary in order to measure and evaluate relevance in a

repeatable and holistic manner. Ground truth is typically obtained in two ways:

• Manually: While producing relevance judgments may be time consuming,

coming up with a representative sample of queries with high business value

and identifying relevant documents for each usually takes just a few days and is

absolutely necessary to measure the impact of any search relevancy changes,

even if you don’t use a Learning to Rank approach. In the case of LTR, a machine

learning algorithm is used to optimize a performance metric (like Precision/

Recall/F1) over your ground truth set with the available relevancy factors

(called “features”, discussed later in this tutorial).

• Implicitly: Instead of producing relevance judgments manually, user-generated

signals may be used as implicit labels. Using signals to train Learning to Rank

models is a common practice and supported by academic literature (i.e. https://

www.cs.cornell.edu/people/tj/publications/radlinski_joachims_05a.pdf),

although is generally of lower quality and more noisy than human expert

produced relevance judgments. It may be possible to improve the reliability

of click-based labels by incorporating other sources of supervision using

impression and position data.

For our tutorial, we will use signal clicks as ground truth. Here is a sample of 10

signal clicks:

https://nlp.stanford.edu/IR-book/html/htmledition/information-retrieval-system-evaluation-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/information-retrieval-system-evaluation-1.html
https://www.cs.cornell.edu/people/tj/publications/radlinski_joachims_05a.pdf
https://www.cs.cornell.edu/people/tj/publications/radlinski_joachims_05a.pdf

4 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

Each row corresponds to a click event where a user clicked on doc_id when searching for query. In

using these clicks as training labels, we are asserting that the most relevant document for each query

is the one that the user clicked. We will be using machine learning to learn a complex function that

optimizes the rank of return for these queries such that the “relevant” documents are more likely to

be ranked before irrelevant documents.

Learning To Rank Training Workflow
Steps for learning and deploying an LTR model:

1. Feature definition: Define features (in JSON) and upload to Solr

2. Feature extraction: Extract <query, document> feature vectors from Solr for each query in our

ground truth set

3. Core model training:Learn model from feature vectors

4. Upload model: Upload model as JSON to Solr to for query-time reranking

Feature Definition

Features are a list of relevancy factors our LTR algorithm automatically assigns weights to.

Features are defined in JSON and uploaded to Solr. This can be done easily using Fusion—see

https://github.com/lucidworks/fusion-ltr-webinar#add-features. The following are the

features defined for this tutorial:

• tfidf_name: Solr score of <query, name field of product>

• tfidf_longDescription: Solr score of <query, longDescription field of product>

• tfidf_shortDescription: Solr score of <query, shortDescription field of product>

• tfidf_categoryNames: Solr score of <query, categoryNames field of product>

• tfidf_previous_click_queries: Solr score of <query, previous_click_queries field of product>,

which is derived using Fusion’s signals capabilities. See https://github.com/lucidworks/fusion-

ltr-webinar/blob/master/Data%20Setup.ipynb for info on how this field is indexed.

• salesRankShortTerm: static value of salesRankShortTerm field indexed with each product

• salesRankLongTerm: static value of salesRankLongTerm field indexed with each product

• customerAverage: static value of customerAverage field indexed with each product

• customerReviewCount: static value of customerReviewCount field indexed with each product

https://github.com/lucidworks/fusion-ltr-webinar#add-features
https://github.com/lucidworks/fusion-ltr-webinar/blob/master/Data%20Setup.ipynb
https://github.com/lucidworks/fusion-ltr-webinar/blob/master/Data%20Setup.ipynb

5 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

Feature Extraction and Model Training

Follow the instructions at https://github.com/lucidworks/fusion-ltr-webinar#setup-

fusion-query-pipeline-to-output-feature-vectors to configure your default Fusion query

pipeline to output feature vectors for each query. If configured properly, submitting a

query should yield an additional field returned for each document called “[features]”, which

contains the feature vector represented as a comma separated list of <key, value> pairs.

Now, Fusion is configured properly and you are ready to run the feature extraction and

model training notebooks, referenced under https://github.com/lucidworks/fusion-ltr-

webinar#execute-ltr-training-pipeline.

Feature extraction is a very CPU intensive operation, which requires Solr to calculate

feature vectors for every ground truth query, which usually number in the thousands of

queries. The feature extraction function for this tutorial demonstrates how to parallelize

this process using Fusion’s Spark cluster.

Core model training involves:

1. Pre-processing feature vectors

• Downsampling negative class – Include N randomly sampled negative instances

for each query_id

• Z-score normalizing feature values, if necessary

2. Splitting feature vectors into train and test sets

https://github.com/lucidworks/fusion-ltr-webinar#setup-fusion-query-pipeline-to-output-feature-vectors
https://github.com/lucidworks/fusion-ltr-webinar#setup-fusion-query-pipeline-to-output-feature-vectors
https://github.com/lucidworks/fusion-ltr-webinar#execute-ltr-training-pipeline
https://github.com/lucidworks/fusion-ltr-webinar#execute-ltr-training-pipeline

6 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

3. Training a simple pointwise Logistic Regression model

4. Evaluating results using recall@K on held-out test set as evaluation metric

In the model training notebook, we demonstrate the differences between these models:

• Solr out-of-the-box BM25 ranking using textual features only

• Logistic Regression using all features except the signals feature

• Logistic Regression using all features

As the following figure shows, there are significant relevance improvements observed over

OOTB Solr BM25 ranking, and even over the Logistic Regression trained model when using

signal features. While the goal of this tutorial is to demonstrate how to implement Learning

to Rank, and not necessarily how to produce the most accurate model, it is useful to note

that leveraging Fusion’s signals, even in a relatively casual way, can easily yield significant

gains in relevance.

Once the model is trained, the best model is uploaded to Solr so that it can be made available

to the Solr Learning to Rank component for query-time reranking of search results.

7 Copyright © 2018 LucidworksFusion Files: Learning to Rank for Better Search Results

Enable Query-time Reranking

To enable query-time reranking, follow the instructions at https://github.com/

lucidworks/fusion-ltr-webinar#update-fusion-query-pipeline-to-enable-query-time-

reranking-using-trained-ltr-model. Enabling query-time reranking involves adding an

additional query pipeline stage that adds a “rq” parameter that references the model that

was just uploaded. To verify that query-time reranking is active, run queries in debug mode

and verify that the scoring explanations make reference to “LinearModel”:

Conclusion
Learning to Rank is a powerful tool in the toolbox of any search engineer looking to improve

search relevance without a series of manual interventions. By using signals of user behavior

(such as what they clicked) and features of your documents, you can teach the machine to

do the relevance tuning for you and achieve better results than other techniques alone.

Get Started or
Learn More
For more information or to

start using Lucidworks Fusion,

contact us today to learn more

at lucidworks.com/contact or
call 415-329-6515.

