You’ve probably used a Question Answering (QA) system. Most of them are just a FAQ turned into a horrible search interface. If you don’t answer the exact question asked, don’t bother. Other QA systems are basically just keyword search that let you put in questions. It is the unicorn that actually fits the bill of a QA system.

So what is a proper question answering system? The answer seems obvious, “it is a system that answers your questions.” But to do it properly it needs to recognize synonyms, close enough answers and other aspects of the meanings of questions specifically and language generally.

question answering system

In their talk, “Enriching Solr With Deep Learning for a Question Answering System” at this year’s Activate conference, Lucidworks data scientists Savva Kolbachev and Sanket Shahane showed a powerful question answering system that they constructed by adding deep learning using Fusion. They both showed how to produce more accurate answers as well as how to scale the approach given the weights of deep learning models.

question answering system

Their talk covers techniques as well as the more technical, mathematical and statistical details and include a demo of how Fusion enriches Solr’s functionality. Additionally they detail highlighting using sentiment analysis.

sentiment analysis

If you’re trying to create an Information Retrieval system such as a QA system, or even if you’re just really interested in deep learning, you’re definitely going to watch this talk.

Next Steps

About Andrew C. Oliver

Read more from this author


Contact us today to learn how Lucidworks can help your team create powerful search and discovery applications for your customers and employees.