Lernen zu ranken

Die Verbesserung der Suchrelevanz ist schwierig.

Learning to Rank (LTR) ist eine wichtige und leistungsstarke Technik, die überwachtes maschinelles Lernen einsetzt, um das Problem der Suchrelevanz zu lösen. Ein LTR-Ansatz nutzt maschinelles Lernen, um Relevanzfaktoren automatisch abzustimmen. Dies erleichtert nicht nur die mit manuellen Prozessen wie Boosts und Blocks verbundenen Schmerzen, sondern verspricht auch eine deutlich verbesserte Relevanz durch den Einsatz modernster Modellierungstechniken. In diesem Leitfaden wird die Leistungsfähigkeit der Fusion-Plattform durch die Kombination von LTR mit aus Signalen abgeleiteten Erkenntnissen demonstriert.

Get your free ebook

You Might Also Like

Wie Einzelhändler unser Business Analytics Dashboard zur Umsatzsteigerung nutzen

Entdecken Sie, wie führende Einzelhändler das Business Analytics Dashboard von Lucidworks nutzen,...

Read More

Dritte jährliche KI-Benchmarkstudie 2025: Was wir im B2C-E-Commerce sehen

Laden Sie die B2C-KI-Benchmark-Einblicke 2025 von Lucidworks herunter. Werfen Sie einen Blick...

Read More

B2B-KI-Benchmarkstudie 2025: Was wir in den Schützengräben sehen

Laden Sie die B2B-KI-Benchmark-Highlights 2025 von Lucidworks herunter. Sehen Sie sich die...

Read More

Quick Links