Top 5 Open Source Natural Language Processing Libraries

Lucidworks CTO Grant Ingersoll’s latest column on Opensource.com gives you a rundown on five of the most popular and powerful open source projects for taming text and processing natural language in both queries and indexing. Highlights projects from Stanford and the Apache Software Foundation:

Thankfully, open source is chock full of high-quality libraries to solve common problems in text processing like sentiment analysis, topic identification, automatic labeling of content, and more. More importantly, open source also provides many building block libraries that make it easy for you to innovate without having to reinvent the wheel. If all of this stuff is giving you flashbacks to your high school grammar classes, not to worry—we’ve included some useful resources at the end to brush up your knowledge as well as explain some of the key concepts around natural language processing (NLP). To begin your journey, check out these projects.

Read all of Grant’s columns on Opensource.com or follow him on Twitter.

Share the knowledge

You Might Also Like

Lucidworks Named a Leader: What This Means for Search, AI—and Your Business

Lucidworks’ recognition as a Leader signals that enterprise search and AI now...

Read More

MCP vs. ACP: What’s the Difference, and When Should Each Be Used?

Artificial intelligence is changing how people interact with data, products, and content....

Read More

The Future of Digital Commerce with ACP: From Static Catalogs to Agent Negotiations

For decades, digital commerce has been built around a familiar concept: the...

Read More

Quick Links