How to Solve Data Problems in Pharma

  • The data lake has failed pharma.
  • The data warehouse is inadequate.
  • Research costs are too high.
  • Clinical trial costs are too high.
  • Payers are getting more discriminating.

Data’s promise to pharma is that it will make research more efficient. The truth is that most data is irrelevant and that managing ever increasing volumes of data is difficult. As new techniques have emerged to allow simulating and researching new drugs in silico, many of the old techniques for managing data have perpetuated.

  • Copying all of your data into one place and doing everything via batch processing is no longer feasible.
  • Structuring all of the data for answers to specific questions is no longer possible in every case.
  • The old data visualization tools aren’t enough for a global, diverse workforce.

It is time to break the old barriers, to use new techniques to manage data, to make better use of the data you have, and prepare for a future where you have even more! In other words, if you’re interested in solving data problems, check out the Lucidworks Life Sciences Data Solutions: What You Should Know Guide.

You Might Also Like

How Lenovo made search a strategic growth driver in the AI era

Discover how Lenovo turned search into a strategic growth driver with Lucidworks,...

Read More

The State of Generative AI 2025: 3 questions to understand your agentic AI readiness

How prepared are businesses for agentic AI? Lucidworks data gives us the...

Read More

Announcing our 2025 Superstars of Search Award winners: Mouser, TE, and Coppel

Celebrating 3 incredible Lucidworks clients who transformed their search experiences and drove...

Read More

Quick Links